deBroglie "Matter Waves"

deBroglie and his matter waves, and its consequences for physics and our concept of reality

Why quantiletion of angular momentum?

$$
\begin{aligned}
& m_{e} v r=n \hbar \quad n=1,2,3 \ldots \\
& \hbar=h / 2 \pi
\end{aligned}
$$

an integer number of wavelengths fits into the circular orbit

$$
\begin{gathered}
n \lambda=2 \pi r \\
\text { where } \\
\lambda=\frac{h}{p}
\end{gathered}
$$

λ is the de Broglie wavelength

Matanitudes of deBroglie wavelengits

Particle Value of $\lambda_{d B}$

Electrons of kinetic energy

1 eV	$12.2 \AA$
100 eV	$1.2 \AA$
10000 eV	$0.12 \AA$

Protons of kinetic energy

1 keV	$0.009 \AA$
1 MeV	28.6 fm
1 GeV	0.73 fm

Thermal neutrons (300K)
Neutrons of kinetic energy 10 MeV
$1.5 \AA$

He atoms at 300 K
$0.75 \AA$
you, walking to the student union $2.54 \times 10^{-34} \mathrm{~m}$ for lunch at 2 miles per hour

$$
1 \AA=10^{-10} \text { meters } \quad 1 \mathrm{fm}=10^{-15} \text { meters }=10^{-5} \AA
$$

Scanning Electron Micposcope

Human hair

Red Blood Cells

the realization that matter

Wave Properties of Electrons

Transmission Electron Microscope

Electrons passed through two slits and detected
(b) After 100 electrons

http://www.hitachi.com/rd/portal/highlight/quantum/doubleslit/index.html
(c) After 3000 electrons

(d) After 70000 electrons
-A large number of electrons going through a double slit will produce an interference pattern, like a wave.
-However, each electron makes a single impact on a phosphorescent screen-like a particle.
-Electrons have indivisible (as far as we know) mass and electric charge, so if you suddenly closed one of the slits, you couldn't chop the electron in halfbecause it clearly is a particle.

- A large number of electrons fired at two simultaneously open slits, however, will eventually, once you have enough statistics, form an intereference pattern. Their cumulative impact is wavelike.
-This leads us to believe that the behavior of electrons is governed by probabilistic laws. --The wavefunction describes the probability that an electron will be found in a particular location.
(see animation
https://www.youtube.com/watch?v=Xmq_FJd1oUQ)

(b) After 100 electrons

(c) After 3000 electrons

We are about to embark on a wave theory of matter ...

It is a good idea to review some concepts about waves

约

For example: Wave on a string Snapshot at some time t

Description of the transverse motion.

$$
\begin{aligned}
& \frac{2 \pi v}{\lambda}=2 \pi f=\omega \\
& v=f \lambda
\end{aligned}
$$

$$
\begin{aligned}
& y(x, t)=A \sin \frac{2 \pi}{\lambda}(x-v t) \\
& v_{y}(x, t)=\frac{d y}{d t}=\omega A \cos \frac{2 \pi}{\lambda}(x-v t) \\
& a_{y}(x, t)=\frac{d^{2} y}{d t^{2}}=-\omega^{2} y=-\omega^{2} A \sin \frac{2 \pi}{\lambda}(x-v t)
\end{aligned}
$$

Anatomy of a classical travelling wave

Fixed time (snapshot)

Fixed location

$$
y(x, t)=A \sin \left[\frac{2 \pi}{\lambda}(x-v t)\right]
$$

Wavenumber: $k \equiv \frac{2 \pi}{\lambda}$
All harmonic waves satisfy: $f \lambda=v \quad f=v / \lambda$

$$
\text { so } 2 \pi f=\omega=\frac{2 \pi v}{\lambda}=k v
$$

Hence $\quad \boldsymbol{y}(\boldsymbol{x}, \boldsymbol{t})=\boldsymbol{A} \boldsymbol{\operatorname { s i n }}(\boldsymbol{k} \boldsymbol{x}-\boldsymbol{\omega} \boldsymbol{t})$

Interforence

waves can interfere (add or cancel)

Two solutions to a linear wave equation:

$$
y_{1}(x, t), y_{2}(x, t)
$$

Any linear combination is also a solution to the wave equation:
$y_{\text {super }}(x, t)=a y_{1}(x, t)+b y_{2}(x, t)$

Interefering waves, generally...

$$
\begin{aligned}
& y=y_{1}+y_{2}=A \cos \left(k_{1} x-\omega_{1} t\right)+A \cos \left(k_{2} x-\omega_{2} t\right) \\
& \Downarrow \\
& y=2 A \cos \frac{1}{2}\left\{\left(k_{2}-k_{1}\right) x-\left(\omega_{2}-\omega_{1}\right) t\right\} \bullet \cos \frac{1}{2}\left\{\left(k_{1}+k_{2}\right) x-\left(\omega_{1}+\omega_{2}\right) t\right\} \\
& \text { "Beats" occur when you } \\
& \text { add two waves of slightly } \\
& \text { different frequency. } \\
& \text { They will interfere } \\
& \text { constructively in some } \\
& \text { areas and destructively in } \\
& \text { others. }
\end{aligned}
$$

$$
2 A \cos \left(\frac{\Delta k}{2} x-\frac{\Delta \omega}{2} t\right)
$$

Modulating a high frequency wave within the envelope: $\cos \left[\frac{1}{2}\left(k_{1}+k_{2}\right) x-\frac{1}{2}\left(\omega_{1}+\omega_{2}\right) t\right]$

